

NIAGARA N4.8 BREAKING CHANGES
A breaking change is a change in a public API which results in dependent products not compiling at

build time, or a change in expected functionality of our software which results in third party dependent

products not working as intended at run-time.

Examples might be:

• A change in an interface or class definition which causes a compile-time failure in dependent

third-party code

• A change is made which requires an explicit request of a security permission at run-time in order to

perform a certain action.

• Removing a method or class (even those marked as @deprecated)

• A change that affects the persistence (bog format) of a station (breaking changes to the station

serialization/deserialization)

• A network/wire compatibility change (for example, changes to fox communication)

BREAKING CHANGE: SESSION TIMEOUT API

In Niagara 4.8, the return types of 2 method signatures related to the session timeout API were changed.

• The return type of BWbShell.notifyTimeout(BWidget, BISession) has changed from void to boolean.

Any subclass overriding this method must now provide a return value. This method is intended to

notify the user when a session is about to expire and give them the option to continue. This method

should return true if the user elected to continue the session, and false otherwise.

• The return type of BFoxProxySession.NotifyListener.onNotify(BFoxProxySession) has changed

from void to boolean. Any class implementing NotifyListener must now provide a return value for

this method. This method is intended to notify the user when a session is about to expire, and give

them the option to continue. This method should return true if the user elected to continue the

session, and false otherwise.

The most likely use case for these methods is a BWbView that implements NotifyListener and calls

notifyTimeout() on the Tridium implementation of BWbShell, like below

public class BMyView extends BWbView implements NotifyListener

{

 @Override

 public void onNotify(BFoxProxySession session)

 {

 getWbShell().notifyTimeout(this, session);

 }

}

Cases like this should simply be updated to return the value from BWbShell.notifyTimeout() like below

public class BMyView extends BWbView implements NotifyListener

{

 @Override

 public boolean onNotify(BFoxProxySession session)

 {

 return getWbShell().notifyTimeout(this, session);

 }

}

BREAKING CHANGE: 3RD PARTY LIBRARIES REMOVED FROM TEST-WB/ TEST-SE

IMPACT: This change affects Niagara Java developers with unit tests developed using Niagara versions

prior to 4.8 who directly used classes from the removed 3rd party libraries.

When attempting to compile these unit tests under Niagara 4.8, one or more "package does not exist" or

"class not found" errors will be generated. For example:

Example error output

MITIGATION: For these unit tests to compile and run in Niagara 4.8, developers will need to add

dependencies for any 3rd party libraries they use to their module gradle files.

For example, if the "foo-rt" module uses classes from the Mockito library, Mockito would need to be

added as "testUberjar" dependency in foo-rt.gradle:

foo-rt.gradle

REMOVED LIBRARIES/ NEW DEPENDENCIES

The following table lists the libraries that were removed, the packages / classes that will be missing

during the compile, and the gradle dependency that will need to be added to the module's gradle file.

Removed Library Missing Packages/Classes
During Compile

Required Dependency In Gradle File

 AOP Alliance org.aopalliance testUberjar "aopalliance:aopalliance:1.0"
JCommander com.beust testUberjar "com.beust:jcommander:1.72"

PrivilegedAccessor org.junit.extensions.PA testUberjar "com.e-
movimento.tinytools:privilegedaccessor:1.2.2"

Google Guava com.google.guava testUberjar "com.google.guava:guava:19.0"
Google Guice com.google.inject testUberjar "com.google.inject:guice:4.1.0'

Mockito org.mockito testUberjar "org.mockito:mockito-
all:1.10.19"

Spring Framework org.springframework
testUberjar "org.springframework:spring-
test:5.0.7.RELEASE"

Javaax.inject API javax.inject testUberjar "javax.inject:javax.inject:1"
XML Unit org.xmlunit testUberjar "xmlunit:xmlunit:1.6"

BREAKING CHANGE: BACnet schedule Import and Export fails for Effective Periods with Wildcard

SUMMARY: Schedule Objects can no longer contain an Unspecified or Special Value.

Most importantly for the Date Range type properties, the Schedule object should not contain an

Unspecified or a Special Value.

DETAILS: Two important changes are as follows:

• BACnet controller profiles will not allow the Write Property service call to succeed when the

properties of type DateRange of a Schedule Object is written with Special Date Time Values. The

Date values in the Date Range have to be a specific date value with actual day, month, year details

available.

• A discovered BACnet Device will not be allowed to export a schedule which has Date Range

properties like Effective Period having Special Date values (or Wild Card values)

WORKAROUND:

Ensure that the properties like Effective Period in the Schedule Object do not contain Special Date

values. In Niagara, one can view the Schedule and update the Effective Period as follows:

This Effective Period, when set, should have some specific date values as follows:

A Niagara station is not able to add a schedule if the schedule contains an Effective Period with Special

Dates. In such a case, Niagara will show the schedules to be in Fault, as follows:

The logs in the console may show exceptions as follows:

